12/12/2024
Um grupo internacional de pesquisadores, com destaque para a participação de brasileiros, conseguiu pela primeira vez desvendar o mecanismo físico-químico que explica o complexo sistema de formação de chuvas na Amazônia, com influência no clima global. Envolve a produção de nanopartículas de aerossóis, descargas elétricas e reações químicas em altitudes elevadas, ocorridas entre a noite e o dia, resultando em uma espécie de “máquina” de aerossóis que vão produzir nuvens.
A pesquisa, publicada na capa da revista Nature, descreve os mecanismos de como o isopreno – um gás liberado pela vegetação por meio de seu metabolismo – é transportado até a camada da atmosfera acima da superfície terrestre próxima da tropopausa durante tempestades noturnas. Uma série de reações químicas desencadeadas com a radiação solar dá origem a uma grande quantidade de aerossóis que formam as nuvens. Esta produção de partícula é acelerada por reações com óxidos de nitrogênio produzidos por descargas elétricas na alta atmosfera, em nuvens dominadas por cristais de gelo.
Até então, os cientistas já haviam identificado as partículas em outra expedição, mas não o mecanismo físico-químico completo. Acreditava-se que o isopreno não chegaria às camadas superiores da atmosfera porque reagiria ao longo do caminho, pois é bastante reativo, e se degradaria rapidamente com a luz solar. Com a descoberta desses novos mecanismos, será possível aprimorar modelos do sistema terrestre, ferramentas fundamentais para simular o clima e compreender o funcionamento presente e futuro do planeta.
Para chegar ao resultado, o grupo usou o material obtido durante o experimento científico CAFE-Brazil, sigla em inglês para Chemistry of the Atmosphere: Field Experiment in Brazil. Único desse tipo, o experimento realizou diversos voos sobre a bacia amazônica entre dezembro de 2022 e janeiro de 2023, a 14 quilômetros (km) de altitude, o que corresponde a duas vezes a altura do Aconcágua, ponto mais alto da América do Sul. Totalizou 136 horas de voo, cobrindo 89 mil km – mais do que duas voltas completas na Terra pelo Equador.
“Um dos destaques desse trabalho é ver como a Amazônia tem uma simbiose de complexos mecanismos e importantes fenômenos que agem dentro de um sensível equilíbrio do ecossistema. A preservação desse equilíbrio permite manter as condições do clima como conhecemos atualmente. Alterações como as provocadas pelas mudanças climáticas ou pelo desflorestamento podem gerar efeitos inesperados e não estudados ainda”, explica à Agência FAPESP um dos autores brasileiros da pesquisa, o professor Luiz Augusto Toledo Machado.
Pesquisador do Instituto de Física da Universidade de São Paulo (IF-USP) e colaborador do Departamento de Química do Instituto Max Planck, na Alemanha, Machado diz que o resultado abre um horizonte amplo para analisar o impacto do aquecimento global no clima, no meio ambiente e no ecossistema.
Para Paulo Artaxo, coordenador do Centro de Estudos Amazônia Sustentável (CEAS) da USP, professor do IF-USP e coautor do artigo, os resultados permitem realizar modelagens com mais confiabilidade, podendo incluir mecanismos do ponto de vista físico-químico e biológico.
“As emissões de isopreno dependem da floresta em pé. Elas não ocorrem se a vegetação nativa for substituída por pastagem ou cultura de soja. Com o desmatamento, esse mecanismo de produção de partículas é destruído, reduzindo a formação de nuvens e de precipitação. É o que chamamos de realimentação negativa no sistema climático total, pois o desmatamento traz redução de precipitação de maneira significativa por diminuir a evapotranspiração e a produção de partículas, que dependem das emissões de isopreno”, afirma Artaxo.
Levantamento divulgado pelo MapBiomas em outubro, com base em imagens de satélites, mostrou que pastagem foi a principal finalidade do desmatamento da Amazônia entre 1985 e 2023. No período, o crescimento dessa área foi de mais de 363%, passando de cerca de 12,7 milhões para 59 milhões de hectares. Com isso, 14% da Amazônia tinha virado área de pastagem em 2023.
A floresta exala aromas muito característicos. São gases conhecidos como compostos orgânicos voláteis (VOCs, na sigla em inglês), entre eles o terpeno – grupo de substâncias encontradas em resinas de árvores e óleos essenciais – e o isopreno. Estima-se que as florestas em todo o mundo liberem mais de 500 milhões de toneladas de isopreno na atmosfera anualmente, sendo que um quarto dessa emissão vem da Amazônia.
Na floresta amazônica, o isopreno é emitido durante o dia, pois depende da luz do sol. Acreditava-se que o gás não alcançava as camadas mais altas da atmosfera porque seria destruído em poucas horas por radicais hidroxila, altamente reativos. “Agora, estabelecemos que isso é parcialmente verdade. Ainda há quantidade considerável de isopreno à noite. Uma parte significativa dessas moléculas pode ser transportada para camadas mais altas da atmosfera”, afirma em nota o autor correspondente do artigo, Joachim Curtius, professor da Universidade Goethe de Frankfurt (Alemanha).
Durante a noite, tempestades tropicais sobre a floresta ajudam a transportar gases, como o isopreno, para camadas mais altas por meio de convecção intensa. Semelhante a um aspirador, esse processo é impulsionado por correntes de ar ascendentes, especialmente em regiões com alta umidade e calor acumulado. Os gases se combinam com compostos de nitrogênio provenientes dos relâmpagos na alta atmosfera.
A reportagem completa pode ser lida no CicloVivo
Brasileiro participa de experimento nos EUA para reduzir arrotos de vacas e ajudar o clima
17/12/2024
Por que terras férteis estão se tornando desertos
17/12/2024
A ´plastisfera´ da Antártida, um novo ecossistema potencialmente perigoso
17/12/2024
´Venenoso e mortal´: o inferno de viver em Nova Déli, uma das cidades mais poluídas do mundo
17/12/2024
Agrônomo cava solo da Antártida para ´plantar´ sondas climáticas
17/12/2024
Carne de baleia é leiloada pela primeira vez em décadas no Japão
17/12/2024